Axes appearance and behavior
expand all in page
Axes
properties control the appearance and behavior of an Axes
object. By changing property values, you can modify certain aspects of the axes. Use dot notation to query and set properties.
ax = gca;c = ax.Color;ax.Color = 'blue';
Font
expand all
FontSize
— Font size
scalar numeric value
Font size, specified as a scalar numeric value. The font size affects the title, axis labels, and tick labels. It also affects any legends or colorbars associated with the axes. The default font size depends on the specific operating system and locale. By default, the font size is measured in points. To change the units, set the FontUnits
property.
MATLAB automatically scales some of the text to a percentage of the axes font size.
Titles and axis labels — 110% of the axes font size by default. To control the scaling, use the
TitleFontSizeMultiplier
andLabelFontSizeMultiplier
properties.Legends and colorbars — 90% of the axes font size by default. To specify a different font size, set the
FontSize
property for theLegend
orColorbar
object instead.
Example: ax.FontSize = 12
FontSizeMode
— Selection mode for font size
'auto'
(default) | 'manual'
Selection mode for the font size, specified as one of these values:
'auto'
— Font size specified by MATLAB. If you resize the axes to be smaller than the default size, the font size might scale down to improve readability and layout.'manual'
— Font size specified manually. Do not scale the font size as the axes size changes. To specify the font size, set theFontSize
property.
LabelFontSizeMultiplier
— Scale factor for label font size
1.1
(default) | numeric value greater than 0
Scale factor for the label font size, specified as a numeric value greater than 0. The scale factor is applied to the value of the FontSize
property to determine the font size for the x-axis, y-axis, and z-axis labels.
Example: ax.LabelFontSizeMultiplier = 1.5
TitleFontSizeMultiplier
— Scale factor for title font size
1.1
(default) | numeric value greater than 0
Scale factor for the title font size, specified as a numeric value greater than 0. The scale factor is applied to the value of the FontSize
property to determine the font size for the title.
SubtitleFontWeight
— Subtitle character thickness
'normal'
(default) | 'bold'
Subtitle character thickness, specified as one of these values:
'normal'
— Default weight as defined by the particular font'bold'
— Thicker characters than normal
Ticks
expand all
XTick
, YTick
, ZTick
— Tick values
[]
(default) | vector of increasing values
Tick values, specified as a vector of increasing values. If you do not want tick marks along the axis, then specify an empty vector []
. The tick values are the locations along the axis where the tick marks appear. The tick labels are the labels that you see next to each tick mark. Use the XTickLabels
, YTickLabels
, and ZTickLabels
properties to specify the associated labels.
Example: ax.XTick = [2 4 6 8 10]
Example: ax.YTick = 0:10:100
Alternatively, use the xticks, yticks, and zticks functions to specify the tick values. For an example, see Specify Axis Tick Values and Labels.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| categorical
| datetime
| duration
XTickMode
, YTickMode
, ZTickMode
— Selection mode for tick values
'auto'
(default) | 'manual'
Selection mode for the tick values, specified as one of these values:
'auto'
— Automatically select the tick values based on the range of data for the axis.'manual'
— Manually specify the tick values. To specify the values, set theXTick
,YTick
, orZTick
property.
Example: ax.XTickMode = 'auto'
XTickLabel
, YTickLabel
, ZTickLabel
— Tick labels
''
(default) | cell array of character vectors | string array | categorical array
Tick labels, specified as a cell array of character vectors, string array, or categorical array. If you do not want tick labels to show, then specify an empty cell array {}
. If you do not specify enough labels for all the tick values, then the labels repeat.
Tick labels support TeX and LaTeX markup. See the TickLabelInterpreter property for more information.
If you specify this property as a categorical array, MATLAB uses the values in the array, not the categories.
As an alternative to setting this property, you can use the xticklabels, yticklabels, and zticklabels functions. For an example, see Specify Axis Tick Values and Labels.
Example: ax.XTickLabel = {'Jan','Feb','Mar','Apr'}
XTickLabelMode
, YTickLabelMode
, ZTickLabelMode
— Selection mode for tick labels
'auto'
(default) | 'manual'
Selection mode for the tick labels, specified as one of these values:
'auto'
— Automatically select the tick labels.'manual'
— Manually specify the tick labels. To specify the labels, set theXTickLabel
,YTickLabel
, orZTickLabel
property.
Example: ax.XTickLabelMode = 'auto'
XTickLabelRotation
, YTickLabelRotation
, ZTickLabelRotation
— Tick label rotation
0
(default) | numeric value in degrees
Tick label rotation, specified as a numeric value in degrees. Positive values give counterclockwise rotation. Negative values give clockwise rotation.
Example: ax.XTickLabelRotation = 45
Example: ax.YTickLabelRotation = 90
Alternatively, use the xtickangle, ytickangle, and ztickangle functions.
XTickLabelRotationMode
, YTickLabelRotationMode
, ZTickLabelRotationMode
— Selection mode for tick label rotation
'auto'
(default) | 'manual'
Selection mode for the tick label rotation, specified as one of these values:
'auto'
— Automatically select the tick label rotation.'manual'
— Use a tick label rotation that you specify. To specify the rotation, set theXTickLabelRotation
,YTickLabelRotation
, orZTickLabelRotation
property.
XMinorTick
, YMinorTick
, ZMinorTick
— Minor tick marks
on/off logical value
Minor tick marks, specified as 'on'
or 'off'
, or as numeric or logical 1
(true
) or 0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to false
. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.
'on'
— Display minor tick marks between the major tick marks on the axis. The space between the major tick marks determines the number of minor tick marks. This value is the default for an axis with a log scale.'off'
— Do not display minor tick marks. This value is the default for an axis with a linear scale.
Example: ax.XMinorTick = 'on'
TickDir
— Tick mark direction
'in'
(default) | 'out'
| 'both'
| 'none'
Tick mark direction, specified as one of these values:
'in'
— Direct the tick marks inward from the axis lines. (Default for 2-D views)'out'
— Direct the tick marks outward from the axis lines. (Default for 3-D views)'both'
— Center the tick marks over the axis lines.'none'
— Do not display any tick marks.
TickLength
— Tick mark length
[0.01 0.025]
(default) | two-element vector
Tick mark length, specified as a two-element vector of the form [2Dlength 3Dlength]
. The first element is the tick mark length in 2-D views and the second element is the tick mark length in 3-D views. Specify the values in units normalized relative to the longest of the visible x-axis, y-axis, or z-axis lines.
Example: ax.TickLength = [0.02 0.035]
Rulers
expand all
XLimMode
, YLimMode
, ZLimMode
— Selection mode for axis limits
'auto'
(default) | 'manual'
Selection mode for the axis limits, specified as one of these values:
'auto'
— Enable automatic limit selection, which is based on the total span of the plotted data and the value of theXLimitMethod
,YLimitMethod
, orZLimitMethod
property.'manual'
— Manually specify the axis limits. To specify the axis limits, set theXLim
,YLim
, orZLim
property.
Example: ax.XLimMode = 'auto'
XLimitMethod
, YLimitMethod
, ZLimitMethod
— Axis limit selection method
'tickaligned'
(default) | 'tight'
| 'padded'
Axis limit selection method, specified as a value from the table. The examples in the table show the approximate appearance for different values of the XLimitMethod
property. Your results might differ depending on your data, the size of the axes, and the type of plot you create.
Value | Description | Example (XLimitMethod ) |
---|---|---|
'tickaligned' | In general, align the edges of the axes box with the tick marks that are closest to your data without excluding any data. The appearance might vary depending on the type of data you plot and the type of chart you create. | |
'tight' | Fit the axes box tightly around the data by setting the axis limits equal to the range of the data. | |
'padded' | Fit the axes box around the data with a thin margin of padding on each side. The width of the margin is approximately 7% of your data range. |
Note
The axis limit method has no effect when the corresponding mode property (XLimMode
, YLimMode
, or ZLimMode
) is set to 'manual'
.
XAxis
, YAxis
, ZAxis
— Axis ruler
ruler object
Axis ruler, returned as a ruler object. The ruler controls the appearance and behavior of the x-axis, y-axis, or z-axis. Modify the appearance and behavior of a particular axis by accessing the associated ruler and setting ruler properties. The type of ruler that MATLAB creates for each axis depends on the plotted data. For a list of ruler properties that Axes
objects support, see:
NumericRuler Properties
DatetimeRuler Properties
DurationRuler Properties
CategoricalRuler Properties
For example, access the ruler for the x-axis through the XAxis
property. Then, change the Color
property of the ruler, and thus the color of the x-axis, to red. Similarly, change the color of the y-axis to green.
ax = gca;ax.XAxis.Color = 'r';ax.YAxis.Color = 'g';
If the Axes
object has two y-axes, then the YAxis
property stores two ruler objects.
XAxisLocation
— x-axis location
'bottom'
(default) | 'top'
| 'origin'
x-axis location, specified as one of the values in this table. This property applies only to 2-D views.
Value | Description | Result |
---|---|---|
'bottom' | Bottom of the axes. Example: | |
'top' | Top of the axes. Example: | |
'origin' | Through the origin point (0,0). Example: |
YAxisLocation
— y-axis location
'left'
(default) | 'right'
| 'origin'
y-axis location, specified as one of the values in this table. This property applies only to 2-D views.
Value | Description | Result |
---|---|---|
'left' | Left side of the axes. Example: | |
'right' | Right side of the axes. Example: | |
'origin' | Through the origin point (0,0). Example: |
XColor
, YColor
, ZColor
— Color of axis line, tick values, and labels
[0.15 0.15 0.15]
(default) | RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...
Color of the axis line, tick values, and labels in the x, y, or z direction, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name. The color you specify also affects the grid lines, unless you specify the grid line color using the GridColor
or MinorGridColor
property.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1]
, for example,[0.4 0.6 0.7]
.A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (
#
) followed by three or six hexadecimal digits, which can range from0
toF
. The values are not case sensitive. Therefore, the color codes"#FF8800"
,"#ff8800"
,"#F80"
, and"#f80"
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
"red" | "r" | [1 0 0] | "#FF0000" | |
"green" | "g" | [0 1 0] | "#00FF00" | |
"blue" | "b" | [0 0 1] | "#0000FF" | |
"cyan" | "c" | [0 1 1] | "#00FFFF" | |
"magenta" | "m" | [1 0 1] | "#FF00FF" | |
"yellow" | "y" | [1 1 0] | "#FFFF00" | |
"black" | "k" | [0 0 0] | "#000000" | |
"white" | "w" | [1 1 1] | "#FFFFFF" | |
"none" | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | "#0072BD" | |
[0.8500 0.3250 0.0980] | "#D95319" | |
[0.9290 0.6940 0.1250] | "#EDB120" | |
[0.4940 0.1840 0.5560] | "#7E2F8E" | |
[0.4660 0.6740 0.1880] | "#77AC30" | |
[0.3010 0.7450 0.9330] | "#4DBEEE" | |
[0.6350 0.0780 0.1840] | "#A2142F" |
Example: ax.XColor = [1 1 0]
Example: ax.YColor = 'y'
Example: ax.ZColor = 'yellow'
Example: ax.ZColor = '#FFFF00'
XColorMode
— Property for setting x-axis grid color
'auto'
(default) | 'manual'
Property for setting the x-axis grid color, specified as 'auto'
or 'manual'
. The mode value only affects the x-axis grid color. The x-axis line, tick values, and labels always use the XColor
value, regardless of the mode.
The x-axis grid color depends on both the XColorMode
property and the GridColorMode
property, as shown here.
XColorMode | GridColorMode | x-Axis Grid Color |
---|---|---|
'auto' | 'auto' | GridColor property |
'manual' | GridColor property | |
'manual' | 'auto' | XColor property |
'manual' | GridColor property |
The x-axis minor grid color depends on both the XColorMode
property and the MinorGridColorMode
property, as shown here.
XColorMode | MinorGridColorMode | x-Axis Minor Grid Color |
---|---|---|
'auto' | 'auto' | MinorGridColor property |
'manual' | MinorGridColor property | |
'manual' | 'auto' | XColor property |
'manual' | MinorGridColor property |
YColorMode
— Property for setting y-axis grid color
'auto'
(default) | 'manual'
Property for setting the y-axis grid color, specified as 'auto'
or 'manual'
. The mode value only affects the y-axis grid color. The y-axis line, tick values, and labels always use the YColor
value, regardless of the mode.
The y-axis grid color depends on both the YColorMode
property and the GridColorMode
property, as shown here.
YColorMode | GridColorMode | y-Axis Grid Color |
---|---|---|
'auto' | 'auto' | GridColor property |
'manual' | GridColor property | |
'manual' | 'auto' | YColor property |
'manual' | GridColor property |
The y-axis minor grid color depends on both the YColorMode
property and the MinorGridColorMode
property, as shown here.
YColorMode | MinorGridColorMode | y-Axis Minor Grid Color |
---|---|---|
'auto' | 'auto' | MinorGridColor property |
'manual' | MinorGridColor property | |
'manual' | 'auto' | YColor property |
'manual' | MinorGridColor property |
ZColorMode
— Property for setting z-axis grid color
'auto'
(default) | 'manual'
Property for setting the z-axis grid color, specified as 'auto'
or 'manual'
. The mode value only affects the z-axis grid color. The z-axis line, tick values, and labels always use the ZColor
value, regardless of the mode.
The z-axis grid color depends on both the ZColorMode
property and the GridColorMode
property, as shown here.
ZColorMode | GridColorMode | z-Axis Grid Color |
---|---|---|
'auto' | 'auto' | GridColor property |
'manual' | GridColor property | |
'manual' | 'auto' | ZColor property |
'manual' | GridColor property |
The z-axis minor grid color depends on both the ZColorMode
property and the MinorGridColorMode
property, as shown here.
ZColorMode | MinorGridColorMode | z-Axis Minor Grid Color |
---|---|---|
'auto' | 'auto' | MinorGridColor property |
'manual' | MinorGridColor property | |
'manual' | 'auto' | ZColor property |
'manual' | MinorGridColor property |
XDir
— x-axis direction
'normal'
(default) | 'reverse'
x-axis direction, specified as one of these values.
Value | Description | Result in 2-D | Result in 3-D |
---|---|---|---|
'normal' | Values increase from left to right. Example: | ||
'reverse' | Values increase from right to left. Example: |
YDir
— y-axis direction
'normal'
(default) | 'reverse'
y-axis direction, specified as one of these values.
Value | Description | Result in 2-D | Result in 3-D |
---|---|---|---|
'normal' | Values increase from bottom to top (2-D view) or front to back (3-D view). Example: | ||
'reverse' | Values increase from top to bottom (2-D view) or back to front (3-D view). Example: |
ZDir
— z-axis direction
'normal'
(default) | 'reverse'
z-axis direction, specified as one of these values.
Value | Description | Result in 3-D |
---|---|---|
'normal' | Values increase pointing out of the screen (2-D view) or from bottom to top (3-D view). Example: | |
'reverse' | Values increase pointing into the screen (2-D view) or from top to bottom (3-D view). Example: |
Grids
expand all
XGrid
, YGrid
, ZGrid
— Grid lines
'off'
(default) | on/off logical value
Grid lines, specified as 'on'
or 'off'
, or as numeric or logical 1
(true
) or 0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to false
. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.
'on'
— Display grid lines perpendicular to the axis; for example, along lines of constant x, y, or z values.'off'
— Do not display the grid lines.
Alternatively, use the grid on
or grid off
command to set all three properties to 'on'
or 'off'
, respectively. For more information, see grid.
Example: ax.XGrid = 'on'
GridLineWidth
— Grid line width
0.5
(default) | positive number
Since R2023a
Grid line width, specified as a positive number. Set this property or the MinorGridLineWidth property to control the thickness of the grid lines independently of the box outline and tick marks.
Example
Create vectors x
and y
, and plot them. Display the grid lines in the axes by calling grid on
. Increase the thickness of the grid lines, box outline, and tick marks by setting the LineWidth
property of the axes to 1.5
.
x = linspace(0,10);y = sin(x);plot(x,y)grid onax = gca;ax.LineWidth = 1.5;
Make the grid lines thinner by setting the grid line width to 0.5
.
ax.GridLineWidth = 0.5;
GridLineWidthMode
— How grid line width is set
"auto"
(default) | "manual"
Since R2023a
How the grid line width is set, specified as one of these values:
"auto"
— Set theGridLineWidth
property to the same value as theLineWidth
property."manual"
— Hold the current value of theGridLineWidth
property.
MATLAB sets this property to "manual"
when you explicitly set the GridLineWidth
property to a value.
GridColor
— Color of grid lines
[0.15 0.15 0.15]
(default) | RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...
Color of grid lines, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1]
, for example,[0.4 0.6 0.7]
.A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (
#
) followed by three or six hexadecimal digits, which can range from0
toF
. The values are not case sensitive. Therefore, the color codes"#FF8800"
,"#ff8800"
,"#F80"
, and"#f80"
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
"red" | "r" | [1 0 0] | "#FF0000" | |
"green" | "g" | [0 1 0] | "#00FF00" | |
"blue" | "b" | [0 0 1] | "#0000FF" | |
"cyan" | "c" | [0 1 1] | "#00FFFF" | |
"magenta" | "m" | [1 0 1] | "#FF00FF" | |
"yellow" | "y" | [1 1 0] | "#FFFF00" | |
"black" | "k" | [0 0 0] | "#000000" | |
"white" | "w" | [1 1 1] | "#FFFFFF" | |
"none" | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | "#0072BD" | |
[0.8500 0.3250 0.0980] | "#D95319" | |
[0.9290 0.6940 0.1250] | "#EDB120" | |
[0.4940 0.1840 0.5560] | "#7E2F8E" | |
[0.4660 0.6740 0.1880] | "#77AC30" | |
[0.3010 0.7450 0.9330] | "#4DBEEE" | |
[0.6350 0.0780 0.1840] | "#A2142F" |
To set the colors for the axes box outline, use the XColor
, YColor
, and ZColor
properties.
To display the grid lines, use the grid on
command or set the XGrid
, YGrid
, or ZGrid
property to 'on'
.
Example: ax.GridColor = [0 0 1]
Example: ax.GridColor = 'b'
Example: ax.GridColor = 'blue'
Example: ax.GridColor = '#0000FF'
GridColorMode
— Property for setting grid color
'auto'
(default) | 'manual'
Property for setting the grid color, specified as one of these values:
'auto'
— Check the values of theXColorMode
,YColorMode
, andZColorMode
properties to determine the grid line colors for the x, y, and z directions.'manual'
— UseGridColor
to set the grid line color for all directions.
XMinorGrid
, YMinorGrid
, ZMinorGrid
— Minor grid lines
'off'
(default) | on/off logical value
Minor grid lines, specified as 'on'
or 'off'
, or as numeric or logical 1
(true
) or 0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to false
. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.
'on'
— Display grid lines aligned with the minor tick marks of the axis. You do not need to enable minor ticks to display minor grid lines.'off'
— Do not display grid lines.
Alternatively, use the grid minor
command to toggle the visibility of the minor grid lines.
Example: ax.XMinorGrid = 'on'
MinorGridLineStyle
— Line style for minor grid lines
':'
(default) | '-'
| '--'
| '-.'
| 'none'
Line style for minor grid lines, specified as one of the line styles shown in this table.
Line Style | Description | Resulting Line |
---|---|---|
"-" | Solid line | |
"--" | Dashed line | |
":" | Dotted line | |
"-." | Dash-dotted line | |
"none" | No line | No line |
To display minor grid lines, use the grid minor
command or set the XMinorGrid
, YMinorGrid
, or ZMinorGrid
property to 'on'
.
Example: ax.MinorGridLineStyle = '-.'
MinorGridLineWidth
— Minor grid line width
0.5
(default) | positive number
Since R2023a
Minor grid line width, specified as a positive number. Set this property or the GridLineWidth property to control the thickness of the grid lines independently of the box outline and tick marks.
Tip
To see the minor grid lines, set the
XMinorGrid
,YMinorGrid
, orZMinorGrid
properties to"on"
.When you set the
GridLineWidth
property, MATLAB also sets theMinorGridLineWidth
property to the same value. To avoid changing theMinorGridLineWidth
property, set theMinorGridLineWidthMode
property to"manual"
before setting theGridLineWidth
property.
MinorGridLineWidthMode
— How minor grid line width is set
"auto"
(default) | "manual"
Since R2023a
How the minor grid line width is set, specified as one of these values:
"auto"
— Set theMinorGridLineWidth
property to the same value as theGridLineWidth
property."manual"
— Hold the current value of theMinorGridLineWidth
property.
MATLAB sets this property to "manual"
when you explicitly set the MinorGridLineWidth
property to a value.
MinorGridColor
— Color of minor grid lines
[0.1 0.1 0.1]
(default) | RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...
Color of minor grid lines, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1]
, for example,[0.4 0.6 0.7]
.A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (
#
) followed by three or six hexadecimal digits, which can range from0
toF
. The values are not case sensitive. Therefore, the color codes"#FF8800"
,"#ff8800"
,"#F80"
, and"#f80"
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
"red" | "r" | [1 0 0] | "#FF0000" | |
"green" | "g" | [0 1 0] | "#00FF00" | |
"blue" | "b" | [0 0 1] | "#0000FF" | |
"cyan" | "c" | [0 1 1] | "#00FFFF" | |
"magenta" | "m" | [1 0 1] | "#FF00FF" | |
"yellow" | "y" | [1 1 0] | "#FFFF00" | |
"black" | "k" | [0 0 0] | "#000000" | |
"white" | "w" | [1 1 1] | "#FFFFFF" | |
"none" | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | "#0072BD" | |
[0.8500 0.3250 0.0980] | "#D95319" | |
[0.9290 0.6940 0.1250] | "#EDB120" | |
[0.4940 0.1840 0.5560] | "#7E2F8E" | |
[0.4660 0.6740 0.1880] | "#77AC30" | |
[0.3010 0.7450 0.9330] | "#4DBEEE" | |
[0.6350 0.0780 0.1840] | "#A2142F" |
To display minor grid lines, use the grid minor
command or set the XMinorGrid
, YMinorGrid
, or ZMinorGrid
property to 'on'
.
Example: ax.MinorGridColor = [0 0 1]
Example: ax.MinorGridColor = 'b'
Example: ax.MinorGridColor = 'blue'
Example: ax.MinorGridColor = '#0000FF'
MinorGridColorMode
— Property for setting minor grid color
'auto'
(default) | 'manual'
Property for setting the minor grid color, specified as one of these values:
'auto'
— Check the values of theXColorMode
,YColorMode
, andZColorMode
properties to determine the grid line colors for the x, y, and z directions.'manual'
— UseMinorGridColor
to set the minor grid line color for all directions.
Labels
expand all
Title
— Text object for title
text object
Text object for the axes title. To add a title, set the String
property of the text object. To change the title appearance, such as the font style or color, set other properties. For a complete list, see Text Properties.
ax = gca;ax.Title.String = 'My Title';ax.Title.FontWeight = 'normal';
Alternatively, use the title function to add a title and control the appearance.
title('My Title','FontWeight','normal')
Note
This text object is not contained in the axes Children
property, cannot be returned by findobj, and does not use default values defined for text objects.
Subtitle
— Text object for subtitle
text object
Text object for the axes subtitle. To add a subtitle, set the String
property of the text object. To change its appearance, such as the font angle, set other properties. For a complete list, see Text Properties.
ax = gca;ax.Subtitle.String = 'An Insightful Subtitle';ax.Subtitle.FontAngle = 'italic';
Alternatively, use the subtitle function to add a subtitle and control the appearance.
subtitle('An Insightful Subtitle','FontAngle','italic')
Or use the title function, and specify two character vector input arguments and two output arguments. Then set properties on the second text object returned by the function.
[t,s] = title('Clever Title','An Insightful Subtitle');s.FontAngle = 'italic';
Note
This text object is not contained in the axes Children
property, cannot be returned by findobj, and does not use default values defined for text objects.
TitleHorizontalAlignment
— Title and subtitle horizontal alignment
'center'
(default) | 'left'
| 'right'
Title and subtitle horizontal alignment with the plot box, specified as one of the values from the table.
TitleHorizontalAlignment Value | Description | Appearance |
---|---|---|
'center' | The title and subtitle are centered over the plot box. | |
'left' | The title and subtitle are aligned with the left side of the plot box. | |
'right' | The title and subtitle are aligned with the right side of the plot box. |
XLabel
, YLabel
, ZLabel
— Text object for axis label
text object
Text object for axis label. To add an axis label, set the String
property of the text object. To change the label appearance, such as the font size, set other properties. For a complete list, see Text Properties.
ax = gca;ax.YLabel.String = 'My y-Axis Label';ax.YLabel.FontSize = 12;
Alternatively, use the xlabel, ylabel, and zlabel functions to add an axis label and control the appearance.
ylabel('My y-Axis Label','FontSize',12)
Note
These text objects are not contained in the axes Children
property, cannot be returned by findobj, and do not use default values defined for text objects.
Legend
— Legend associated with axes
empty GraphicsPlaceholder
(default) | Legend
object
This property is read-only.
Legend associated with the Axes
object, specified as a Legend
object. To add a legend to the axes, use the legend function. Then, you can use this property to modify the legend. For a complete list of properties, see Legend Properties.
plot(rand(3))legend({'Line 1','Line 2','Line 3'},'FontSize',12)ax = gca;ax.Legend.TextColor = 'red';
You also can use this property to determine if the axes has a legend.
ax = gca;lgd = ax.Legendif ~isempty(lgd) disp('Legend Exists')end
Multiple Plots
expand all
LineStyleCyclingMethod
— How to cycle through line styles
"aftercolor"
(default) | "beforecolor"
| "withcolor"
Since R2023a
How to cycle through the line styles when there are multiple lines in the axes, specified as one of the values from this table.
The examples in this table were created using the default colors in the ColorOrder
property and three line styles (["-","-o","--"]
) in the LineStyleOrder
property.
Value | Description | Example |
---|---|---|
| Cycle through the line styles of the LineStyleOrder after the colors of the ColorOrder. | |
"beforecolor" | Cycle through the line styles of the | |
"withcolor" | Cycle through the line styles of the |
NextSeriesIndex
— SeriesIndex
value for next object
whole number
This property is read-only.
SeriesIndex
value for the next plot object added to the axes, returned as a whole number greater than or equal to 0
. This property is useful when you want to track how the objects cycle through the colors and line styles. This property maintains a count of the objects in the axes that have a numeric SeriesIndex
property value. MATLAB uses it to assign a SeriesIndex
value to each new object. The count starts at 1
when you create the axes, and it increases by 1
for each additional object. Thus, the count is typically n+1, where n is the number of objects in the axes.
If you manually change the ColorOrderIndex
or LineStyleOrderIndex
property on the axes, the value of the NextSeriesIndex
property changes to 0
. As a consequence, objects that have a SeriesIndex
property no longer update automatically when you change the ColorOrder
or LineStyleOrder
properties on the axes.
Color and Transparency Maps
expand all
Colormap
— Color map
parula (default) | m
-by-3
array of RGB triplets
Color map, specified as an m
-by-3
array of RGB (red, green, blue) triplets that define m
individual colors.
Example: ax.Colormap = [1 0 1; 0 0 1; 1 1 0]
sets the color map to three colors: magenta, blue, and yellow.
MATLAB accesses these colors by their row number.
Alternatively, use the colormap function to change the color map.
ColorScale
— Scale for color mapping
'linear'
(default) | 'log'
Scale for color mapping, specified as one of these values:
'linear'
— Linear scale. The tick values along the colorbar also use a linear scale.'log'
— Log scale. The tick values along the colorbar also use a log scale.
CLim
— Color limits
[0 1]
(default) | two-element vector of the form [cmin cmax]
Color limits for objects in axes that use the colormap, specified as a two-element vector of the form [cmin cmax]
. This property determines how data values map to the colors in the colormap where:
cmin
specifies the data value that maps to the first color in the colormap.cmax
specifies the data value that maps to the last color in the colormap.
The Axes
object interpolates data values between cmin
and cmax
across the colormap. Values outside this range use either the first or last color, whichever is closest.
Alphamap
— Transparency map
array of 64 values from 0
to 1
(default) | array of finite alpha values from 0
to 1
Transparency map, specified as an array of finite alpha values that progress linearly from 0
to 1
. The size of the array can be m-by-1 or 1-by-m. MATLAB accesses alpha values by their index in the array. An alphamap can be any length.
AlphaScale
— Scale for transparency mapping
'linear'
(default) | 'log'
Scale for transparency mapping, specified as one of these values:
'linear'
— Linear scale'log'
— Log scale
ALim
— Alpha limits
[0 1]
(default) | two-element vector of the form [amin amax]
Alpha limits, specified as a two-element vector of the form [amin amax]
. This property affects the AlphaData
values of graphics objects, such as surface, image, and patch objects. This property determines how the AlphaData
values map to the figure alpha map, where:
amin
specifies the data value that maps to the first alpha value in the figure alpha map.amax
specifies the data value that maps to the last alpha value in the figure alpha map.
The Axes
object interpolates data values between amin
and amax
across the figure alpha map. Values outside this range use either the first or last alpha map value, whichever is closest.
The Alphamap property of the figure contains the alpha map. For more information, see the alpha function.
Box Styling
expand all
Color
— Background color
[1 1 1]
(default) | RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...
Background color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1]
, for example,[0.4 0.6 0.7]
.A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (
#
) followed by three or six hexadecimal digits, which can range from0
toF
. The values are not case sensitive. Therefore, the color codes"#FF8800"
,"#ff8800"
,"#F80"
, and"#f80"
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
"red" | "r" | [1 0 0] | "#FF0000" | |
"green" | "g" | [0 1 0] | "#00FF00" | |
"blue" | "b" | [0 0 1] | "#0000FF" | |
"cyan" | "c" | [0 1 1] | "#00FFFF" | |
"magenta" | "m" | [1 0 1] | "#FF00FF" | |
"yellow" | "y" | [1 1 0] | "#FFFF00" | |
"black" | "k" | [0 0 0] | "#000000" | |
"white" | "w" | [1 1 1] | "#FFFFFF" | |
"none" | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | "#0072BD" | |
[0.8500 0.3250 0.0980] | "#D95319" | |
[0.9290 0.6940 0.1250] | "#EDB120" | |
[0.4940 0.1840 0.5560] | "#7E2F8E" | |
[0.4660 0.6740 0.1880] | "#77AC30" | |
[0.3010 0.7450 0.9330] | "#4DBEEE" | |
[0.6350 0.0780 0.1840] | "#A2142F" |
Example: ax.Color = [0 0 1];
Example: ax.Color = 'b';
Example: ax.Color = 'blue';
Example: ax.Color = '#0000FF';
LineWidth
— Line width
0.5
(default) | positive numeric value
Line width of axes outline, tick marks, and grid lines, specified as a positive numeric value in point units. One point equals 1/72 inch.
Example: ax.LineWidth = 1.5
Box
— Box outline
'off'
(default) | on/off logical value
Box outline, specified as 'on'
or 'off'
, or as numeric or logical 1
(true
) or 0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to false
. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.
Value | Description | 2-D Result | 3-D Result |
---|---|---|---|
'on' | Display the box outline around the axes. For 3-D views, use the Example: | ||
'off' | Do not display the box outline around the axes. Example: |
The XColor
, YColor
, and ZColor
properties control the color of the outline.
Example: ax.Box = 'on'
BoxStyle
— Box outline style
'back'
(default) | 'full'
Box outline style, specified as 'back'
or 'full'
. This property affects only 3-D views.
Value | Description | Result |
---|---|---|
'back' | Outline the back planes of the 3-D box. Example: | |
'full' | Outline the entire 3-D box. Example: |
Clipping
— Clipping of objects to axes limits
'on'
(default) | on/off logical value
Clipping of objects to the axes limits, specified as 'on'
or 'off'
, or as numeric or logical 1
(true
) or 0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to false
. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.
The clipping behavior of an object within the Axes
object depends on both the Clipping
property of the Axes
object and the Clipping
property of the individual object. The property value of the Axes
object has these effects:
'on'
— Enable each individual object within the axes to control its own clipping behavior based on theClipping
property value for the object.'off'
— Disable clipping for all objects within the axes, regardless of theClipping
property value for the individual objects. Parts of objects can appear outside of the axes limits. For example, parts can appear outside the limits if you create a plot, use thehold on
command, freeze the axis scaling, and then add a plot that is larger than the original plot.
This table lists the results for different combinations of Clipping
property values.
Clipping Property for Axes Object | Clipping Property for Individual Object | Result |
---|---|---|
'on' | 'on' | Individual object is clipped. Others might or might not be. |
'on' | 'off' | Individual object is not clipped. Others might or might not be. |
'off' | 'on' | All objects are unclipped. |
'off' | 'off' | All objects are unclipped. |
ClippingStyle
— Clipping boundaries
'3dbox'
(default) | 'rectangle'
Clipping boundaries, specified as one of the values in this table. If a plot contains markers, then as long as the data point lies within the axes limits, MATLAB draws the entire marker.
The ClippingStyle
property has no effect if the Clipping
property is set to 'off'
.
Value | Descriptions | Illustration of Boundary Region |
---|---|---|
'3dbox' | Clip plotted objects to the six sides of the axes box defined by the axis limits. Thick lines might display outside the axes limits. | |
'rectangle' | Clip plotted objects to a rectangular boundary enclosing the axes in any given view. Clip thick lines at the axes limits. |
AmbientLightColor
— Background light color
[1 1 1]
(default) | RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...
Background light color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name. The background light is a directionless light that shines uniformly on all objects in the axes. To add light, use the light function.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1]
, for example,[0.4 0.6 0.7]
.A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (
#
) followed by three or six hexadecimal digits, which can range from0
toF
. The values are not case sensitive. Therefore, the color codes"#FF8800"
,"#ff8800"
,"#F80"
, and"#f80"
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
"red" | "r" | [1 0 0] | "#FF0000" | |
"green" | "g" | [0 1 0] | "#00FF00" | |
"blue" | "b" | [0 0 1] | "#0000FF" | |
"cyan" | "c" | [0 1 1] | "#00FFFF" | |
"magenta" | "m" | [1 0 1] | "#FF00FF" | |
"yellow" | "y" | [1 1 0] | "#FFFF00" | |
"black" | "k" | [0 0 0] | "#000000" | |
"white" | "w" | [1 1 1] | "#FFFFFF" | |
"none" | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | "#0072BD" | |
[0.8500 0.3250 0.0980] | "#D95319" | |
[0.9290 0.6940 0.1250] | "#EDB120" | |
[0.4940 0.1840 0.5560] | "#7E2F8E" | |
[0.4660 0.6740 0.1880] | "#77AC30" | |
[0.3010 0.7450 0.9330] | "#4DBEEE" | |
[0.6350 0.0780 0.1840] | "#A2142F" |
Example: ax.AmbientLightColor = [1 0 1]
Example: ax.AmbientLightColor = 'm'
Example: ax.AmbientLightColor = 'magenta'
Example: ax.AmbientLightColor = '#FF00FF'
Position
expand all
InnerPosition
— Inner size and location
[0.1300 0.1100 0.7750 0.8150]
(default) | four-element vector
Inner size and location, specified as a four-element vector of the form [left bottom width height]
. This property is equivalent to the Position
property.
Note
When querying the inner position of axes with constrained aspect ratios (such square axes or those containing images) consider using the tightPosition function for more accuracy. (since R2022b)
Setting this property has no effect when the parent container is a
TiledChartLayout
TightInset
— Margins for text labels
four-element vector of the form [left bottom right top]
This property is read-only.
Margins for the text labels, returned as a four-element vector of the form [left bottom right top]
. By default, MATLAB measures the values in units normalized to the container. To change the units, set the Units
property.
The elements define the distances between the bounds of the Position
property and the extent of the surrounding text. The Position
values combined with the TightInset
values define the tightest bounding box that encloses the axes and the surrounding text.
These figures show the areas defined by the OuterPosition
values (blue), the Position
values (red), and the Position
expanded by the TightInset
values (magenta).
2-D View of Axes | 3-D View of Axes |
---|---|
For more information, see Control Axes Layout.
PositionConstraint
— Position to hold constant
"outerposition"
| "innerposition"
Position property to hold constant when adding, removing, or changing decorations, specified as one of the following values:
"outerposition"
— TheOuterPosition
property remains constant when you add, remove, or change decorations such as a title or an axis label. If any positional adjustments are needed, MATLAB adjusts theInnerPosition
property."innerposition"
— TheInnerPosition
property remains constant when you add, remove, or change decorations such as a title or an axis label. If any positional adjustments are needed, MATLAB adjusts theOuterPosition
property.
Note
Setting this property has no effect when the parent container is a TiledChartLayout
object.
DataAspectRatio
— Relative length of data units
[1 1 1]
(default) | three-element vector of the form [dx dy dz]
Relative length of data units along each axis, specified as a three-element vector of the form [dx dy dz]
. This vector defines the relative x, y, and z data scale factors. For example, specifying this property as [1 2 1]
sets the length of one unit of data in the x-direction to be the same length as two units of data in the y-direction and one unit of data in the z-direction.
Alternatively, use the daspect function to change the data aspect ratio.
Example: ax.DataAspectRatio = [1 1 1]
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
DataAspectRatioMode
— Data aspect ratio mode
'auto'
(default) | 'manual'
Data aspect ratio mode, specified as one of these values:
'auto'
— Automatically select values that make best use of the available space. IfPlotBoxAspectRatioMode
andCameraViewAngleMode
are also set to'auto'
, then enable "stretch-to-fill" behavior. Stretch the axes so that it fills the available space as defined by thePosition
property.'manual'
— Disable the "stretch-to-fill" behavior and use the manually specified data aspect ratio. To specify the values, set theDataAspectRatio
property.
PlotBoxAspectRatio
— Relative length of each axis
[1 1 1]
(default) | three-element vector of the form [px py pz]
Relative length of each axis, specified as a three-element vector of the form [px py pz]
defining the relative x-axis, y-axis, and z-axis scale factors. The plot box is a box enclosing the axes data region as defined by the axis limits.
Alternatively, use the pbaspect function to change the plot box aspect ratio.
If you specify the axis limits, data aspect ratio, and plot box aspect ratio, then MATLAB ignores the plot box aspect ratio. It adheres to the axis limits and data aspect ratio.
Example: ax.PlotBoxAspectRatio = [1 0.75 0.75]
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
PlotBoxAspectRatioMode
— Selection mode for PlotBoxAspectRatio
'auto'
(default) | 'manual'
Selection mode for the PlotBoxAspectRatio
property, specified as one of these values:
'auto'
— Automatically select values that make best use of the available space. IfDataAspectRatioMode
andCameraViewAngleMode
also are set to'auto'
, then enable "stretch-to-fill" behavior. Stretch theAxes
object so that it fills the available space as defined by thePosition
property.'manual'
— Disable the "stretch-to-fill" behavior and use the manually specified plot box aspect ratio. To specify the values, set thePlotBoxAspectRatio
property.
Layout
— Layout options
empty LayoutOptions
array (default) | TiledChartLayoutOptions
object | GridLayoutOptions
object
Layout options, specified as a TiledChartLayoutOptions
or a GridLayoutOptions
object. This property is useful when the axes object is either in a tiled chart layout or a grid layout.
To position the axes within the grid of a tiled chart layout, set the Tile
and TileSpan
properties on the TiledChartLayoutOptions
object. For example, consider a 3-by-3 tiled chart layout. The layout has a grid of tiles in the center, and four tiles along the outer edges. In practice, the grid is invisible and the outer tiles do not take up space until you populate them with axes or charts.
This code places the axes ax
in the third tile of the grid.
ax.Layout.Tile = 3;
To make the axes span multiple tiles, specify the TileSpan
property as a two-element vector. For example, this axes spans 2
rows and 3
columns of tiles.
ax.Layout.TileSpan = [2 3];
To place the axes in one of the surrounding tiles, specify the Tile
property as 'north'
, 'south'
, 'east'
, or 'west'
. For example, setting the value to 'east'
places the axes in the tile to the right of the grid.
ax.Layout.Tile = 'east';
To place the axes into a layout within an app, specify this property as a GridLayoutOptions
object. For more information about working with grid layouts in apps, see uigridlayout.
If the axes is not a child of either a tiled chart layout or a grid layout (for example, if it is a child of a figure or panel) then this property is empty and has no effect.
View
expand all
View
— Azimuth and elevation of view
[0 90]
(default) | two-element vector of the form [azimuth elevation]
Azimuth and elevation of view, specified as a two-element vector of the form [azimuth elevation]
defined in degree units. Alternatively, use the view function to set the view.
Note
Setting the azimuth and elevation angles might reset other camera-related properties. For best results, set the azimuth and elevation angles before setting other camera-related properties.
Example: ax.View = [45 45]
Projection
— Type of projection onto 2-D screen
'orthographic'
(default) | 'perspective'
Type of projection onto a 2-D screen, specified as one of these values:
'orthographic'
— Maintain the correct relative dimensions of graphics objects regarding the distance of a given point from the viewer, and draw lines that are parallel in the data parallel on the screen.'perspective'
— Incorporate foreshortening, which enables you to perceive depth in 2-D representations of 3-D objects. Perspective projection does not preserve the relative dimensions of objects. Instead, it displays a distant line segment smaller than a nearer line segment of the same length. Lines that are parallel in the data might not appear parallel on screen.
CameraPosition
— Camera location
three-element vector of the form [x y z]
Camera location, or the viewpoint, specified as a three-element vector of the form [x y z]
. This vector defines the axes coordinates of the camera location, which is the point from which you view the axes. The camera is oriented along the view axis, which is a straight line that connects the camera position and the camera target. For an illustration, see Camera Graphics Terminology.
If the Projection property is set to 'perspective'
, then as you change the CameraPosition
setting, the amount of perspective also changes.
Alternatively, use the campos function to set the camera location.
Example: ax.CameraPosition = [0.5 0.5 9]
Data Types: single
| double
CameraPositionMode
— Selection mode for CameraPosition
'auto'
(default) | 'manual'
Selection mode for the CameraPosition
property, specified as one of these values:
'auto'
— Automatically setCameraPosition
along the view axis. Calculate the position so that the camera lies a fixed distance from the target along the azimuth and elevation specified by the current view, as returned by the view function. Functions like rotate3d, zoom, and pan, change this mode to'auto'
to perform their actions.'manual'
— Manually specify the value. To specify the value, set theCameraPosition
property.
CameraTarget
— Camera target point
three-element vector of the form [x y z]
Camera target point, specified as a three-element vector of the form [x y z]
. This vector defines the axes coordinates of the point. The camera is oriented along the view axis, which is a straight line that connects the camera position and the camera target. For an illustration, see Camera Graphics Terminology.
Alternatively, use the camtarget function to set the camera target.
Example: ax.CameraTarget = [0.5 0.5 0.5]
Data Types: single
| double
CameraTargetMode
— Selection mode for CameraTarget
'auto'
(default) | 'manual'
Selection mode for the CameraTarget
property, specified as one of these values:
'auto'
— Position the camera target at the centroid of the axes plot box.'manual'
— Use the manually specified camera target value. To specify a value, set theCameraTarget
property.
CameraUpVector
— Vector defining upwards direction
three-element direction vector of the form [x y z]
Vector defining upwards direction, specified as a three-element direction vector of the form [x y z]
. For 2-D views, the default value is [0 1 0]
. For 3-D views, the default value is [0 0 1]
. For an illustration, see Camera Graphics Terminology.
Alternatively, use the camup function to set the upwards direction.
Example: ax.CameraUpVector = [sin(45) cos(45) 1]
CameraUpVectorMode
— Selection mode for CameraUpVector
'auto'
(default) | 'manual'
Selection mode for the CameraUpVector
property, specified as one of these values:
'auto'
— Automatically set the value to[0 0 1]
for 3-D views so that the positive z-direction is up. Set the value to[0 1 0]
for 2-D views so that the positive y-direction is up.'manual'
— Manually specify the vector defining the upwards direction. To specify a value, set the CameraUpVector property.
CameraViewAngle
— Field of view
6.6086
(default) | scalar angle in range [0,180)
Field of view, specified as a scalar angle greater than 0 and less than or equal to 180. Changing the camera view angle affects the size of graphics objects displayed in the axes, but does not affect the degree of perspective distortion. The greater the angle, the larger the field of view and the smaller objects appear in the scene. For an illustration, see Camera Graphics Terminology.
Example: ax.CameraViewAngle = 15
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| logical
CameraViewAngleMode
— Selection mode for CameraViewAngle
'auto'
(default) | 'manual'
Selection mode for the CameraViewAngle
property, specified as one of these values:
'auto'
— Automatically select the field of view as the minimum angle that captures the entire scene, up to 180 degrees.'manual'
— Manually specify the field of view. To specify a value, set the CameraViewAngle property.
Interactivity
expand all
Toolbar
— Data exploration toolbar
AxesToolbar
object (default)
Data exploration toolbar, which is an AxesToolbar
object. The toolbar appears at the top-right corner of the axes when you hover over it.
The toolbar buttons depend on the contents of the axes, but typically include zooming, panning, rotating, data tips, data brushing, and restoring the original view. You can customize the toolbar buttons using the axtoolbar and axtoolbarbtn functions.
If you do not want the toolbar to appear when you hover over the axes, set the Visible
property of the AxesToolbar
object to 'off'
.
ax = gca;ax.Toolbar.Visible = 'off';
For more information, see AxesToolbar Properties.
Interactions
— Interactions
array of interaction objects | []
Interactions, specified as an array of interaction objects or an empty array. The interactions you specify are available within your chart through gestures. You do not have to select any axes toolbar buttons to use them. For example, a panInteraction object enables dragging to pan within a chart. For a list of interaction objects, see Control Chart Interactivity.
The default set of interactions depends on the type of chart you are displaying. You can replace the default set with a new set of interactions, but you cannot access or modify any of the interactions in the default set. For example, this code replaces the default set of interactions with the panInteraction and zoomInteraction objects.
ax = gca;ax.Interactions = [panInteraction zoomInteraction];
To remove all interactions from the axes, set this property to an empty array. To temporarily disable the current set of interactions, call the disableDefaultInteractivity function. You can reenable them by calling the enableDefaultInteractivity function.
Note
Interaction objects are not returned by findobj or findall, and they are not copied by copyobj.
Visible
— State of visibility
'on'
(default) | on/off logical value
State of visibility, specified as 'on'
or 'off'
, or as numeric or logical 1
(true
) or 0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to false
. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.
'on'
— Display the axes and its children.'off'
— Hide the axes without deleting it. You still can access the properties of an invisible axes object.
Note
When the Visible
property is 'off'
, the axes object is invisible, but child objects such as lines remain visible.
CurrentPoint
— Location of mouse pointer
2-by-3 array
This property is read-only.
Location of mouse pointer, returned as a 2-by-3 array. The CurrentPoint
property contains the (x,y,z) coordinates of the mouse pointer with respect to the axes. The returned array is of the form:
[xfront yfront zfront xback yback zback]
The two points indicate the location of the last mouse click. However, if the figure has a WindowButtonMotionFcn
callback defined, then the points indicate the last location of the mouse pointer. The figure also has a CurrentPoint property.
The values of the current point when using perspective projection can be different from the same point in orthographic projection because the shape of the axes volume can be different.
Orthogonal Projection
When using orthogonal projection, the values depend on whether the click is within the axes or outside the axes.
If the click is inside the axes, the two points lie on the line that is perpendicular to the plane of the screen and that passes through the pointer. The coordinates are the points where this line intersects the front and back surfaces of the axes volume (which is defined by the axes x, y, and z limits). The first row is the point nearest to the camera position. The second row is the point farthest from the camera position. This is true for both 2-D and 3-D views.
If the click is outside the axes, but within the figure, then the points lie on a line that passes through the pointer and is perpendicular to the camera target and camera position planes. The first row is the point in the camera position plane. The second row is the point in the plane of the camera target.
Perspective Projection
Clicking outside of the Axes
object in perspective projection returns the front point as the current camera position. Only the back point updates with the coordinates of a point that lies on a line extending from the camera position through the pointer and intersecting the camera target at that point.
Callbacks
expand all
Callback Execution Control
expand all
Parent/Child
expand all
Parent
— Parent container
Figure
object | Panel
object | Tab
object | TiledChartLayout
object | GridLayout
object
Parent container, specified as a Figure
, Panel
, Tab
, TiledChartLayout
, or GridLayout
object.
Identifiers
expand all
Type
— Type of graphics object
'axes'
This property is read-only.
Type of graphics object returned as 'axes'
.
Version History
Introduced before R2006a
expand all
R2023a: Control cycling of line styles using the LineStyleCyclingMethod
property
Use the LineStyleCyclingMethod
property to control how different lines are distinguished from one another in the axes.
R2023a: Specify grid line thickness using the GridLineWidth
and MinorGridLineWidth
properties
Change the thickness of grid lines independently of the box outline and tick marks by setting the GridLineWidth
and MinorGridLineWidth
properties of the axes. Before R2023a, the LineWidth
property of the axes was the only property for controlling the grid line width. However, that property controlled the grid lines, box outline, and tick marks together. Now you can control the thickness of the grid lines separately.
R2022a: The FontSmoothing
property will have no effect in a future release
The FontSmoothing
property will have no effect in a future release. Font smoothing will be enabled regardless of the value of the property.
R2022a: Control tick label rotation using the XTickLabelRotationMode
, YTickLabelRotationMode
, and ZTickLabelRotationMode
properties
Now you can control the selection mode for tick label rotation by setting the XTickLabelRotationMode
, YTickLabelRotationMode
, or ZTickLabelRotationMode
property.
R2021b: Remove tick marks by setting the TickDir
property to "none"
You can remove all the tick marks from the axes by setting the TickDir
property to "none"
.
R2021a: Control axis limits with the XLimitMethod
, YLimitMethod
, and ZLimitMethod
properties
Control the axis limits for your plots by setting the XLimitMethod
, YLimitMethod
, or ZLimitMethod
on the axes.
R2020b: Control the alignment of a plot title with the TitleHorizontalAlignment
property
You can control the alignment of a plot title by setting the TitleHorizontalAlignment
property of the axes to "left"
, "right"
, or "center"
.
R2020b: Create and style subtitles with the Subtitle
and SubtitleFontWeight
properties
Add a subtitle to your plot by setting the Subtitle
property or calling the subtitle function. To control the appearance of the subtitle, set the SubtitleFontWeight
property.
R2020a: Preserve inner or outer position with the PositionConstraint
property
Set the PositionConstraint
property of an Axes
object to control the space around the plot box when you add or modify decorations such as titles and axis labels.
R2020a: UIContextMenu
property is not recommended
Setting or getting UIContextMenu
property is not recommended. Instead, use the ContextMenu
property, which accepts the same type of input and behaves the same way as the UIContextMenu
property.
There are no plans to remove the UIContextMenu
property, but it is no longer listed when you call the set
, get
, or properties
functions on the Axes
object.
R2019b: Position axes within tiled chart layouts using the Layout
property
Use the Layout
property to position an Axes
object within a tiled chart layout.
R2019a: Customize chart interactions using the Interactions
property
You can create a customized set of chart interactions by setting the Interactions
property of the axes. These interactions are built into the axes and are available without having to select any buttons in the axes toolbar. Some types of interactions are enabled by default, depending on the content of the axes.
R2018a: Add a toolbar to the axes with the Toolbar
property
Use the Toolbar
property to add a toolbar to the top-right corner of the axes for quick access to data exploration tools.
See Also
axes | axis | gca | cla | box | grid
Topics
- Access Property Values
- Graphics Object Properties
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- Deutsch
- English
- Français
- United Kingdom (English)
Contact your local office